Selecting Rows in Pandas
orders = pd.read_csv('shoefly.csv')
emails = orders['email']
#print(orders.head())
frances_palmer = orders[(orders.first_name == 'Frances') & (orders.last_name == 'Palmer')]
comfy_shoes = orders[orders.shoe_type.isin(['clogs','boots','ballet flats'])]
print(frances_palmer)
print(comfy_shoes)
Lambda Syntax
get_last_name = lambda x: x.split(" ")[-1]
df['last_name'] = df.name.apply(get_last_name)
print(df)
New Problem
df = pd.read_csv('employees.csv')
total_earned = lambda row: (row.hourly_wage * 40) + ((row.hourly_wage * 1.5) * (row.hours_worked - 40)) \
if row.hours_worked > 40 \
else row.hourly_wage * row.hours_worked
df['total_earned'] = df.apply(total_earned, axis = 1)
print(df)
Comments
Post a Comment